INFORMATION TECHNOLOGY FOR THE 21st CENTURY

Initiative

Long term IT research for computing breakthroughs

 Advanced computing for science, engineering, and the Nation Research on economic and social impacts of the Information Revolution 66M 3 \$146M \$100M \$70M θ ONAL INS D ATMOS ... ____ OTA NOAA 0 TMENT OF \$38M \$6M \$6M

T2:

- Responds to recommendations made by the President's Information Technology Advisory Committee (PITAC) in their February 1999 report "Information Technology Research: Investing in Our Future"
- Will be managed jointly with the High Performance Computing and Communications (HPCC) programs and the Next Generation Internet (NGI) initiative
- Will be coordinated by the National Coordination Office for Computing, Information, and Communications

Understand the Social, Economic, and Workforce Implications of IT

Priority

Increased research and greater interaction between computer and social scientists will:

- Provide insight into how information systems are actually used, contributing to information systems design
- Help identify barriers to the adoption of IT and its application
- Assist policymakers by providing more empirical data on the impact of IT
- · Encourage the development of technical solutions to problems caused by IT

National Science Foundation

Fundamental IT Research

- Software
 - Innovative research addressing real problems
 - Improved software development through science and engineering
- Human/computer interface and information management
 - Sensors and actuators to enhance physical and mental abilities
 - Technologies that let people meet, work, and collaborate in cyberspace
 - IT for using what we know and what we can find out
- Scalable information infrastructure
 - Technologies to let all Americans access information
 - Improve security, privacy, reliability
- High end computing
 - New algorithms and tools
 - Terascale opportunities for promoting science

Advanced Computing for Science Engineering, and the Nation

- Open, competitive access to terascale computing systems (with DOE)
- Interdisciplinary computational science and engineering research
- Revolutionary computing systems
- Distributed databases for national applications

Economic and Social Impacts of IT

- Joint social science/computer science research
- Insight into how information systems are used

IT Workforce

- Understand the IT pipeline
- Technologies for learning
- High end IT for researchers, educators, and students

Department of Defense

Software for reliable, safe, and cooperative operation of free ranging autonomous systems

- Mobile robots to range over air, land, or sea
- Knowbots to range over cyberspace
- Ability to learn and adapt to change and uncertainty

Scalable networks to manage 100 billion embedded and autonomous sensors and actuators in direct contact with real world processes

- Flexible mechanisms for naming, addressing, configuring, and administration
- Traffic models, architectures, and protocols
- Nomadic middleware for data fusion and dissemination

High end computing

- Processors whose logic is configurable cycle by cycle
- Reduced latency through logic-in-memory fabrication and programmable caches
- Bio-digital interfaces and processing techniques

Mechanisms

- Young Investigator Awards
- University Research Initiatives

Participants

- Office of the Director of Defense for Research and Engineering (DDR&E)
- Defense Advanced Research Projects Agency (DARPĂ)
- Advanced Research & Development Activity (ARDA)

Aligned with Joint Chiefs of Staff's Joint Vision 2010 to achieve warfighting effectiveness

Department of Energy

Scientific Simulation Initiative (SSI)

- Understand, model, predict global effects of greenhouse gases
- Understand, model, predict combustion devices and processes
- New generation of teraflops simulations to revolutionize scientific research
- Basic computer science and applied mathematics

Software for very high performance computing systems

- Problem solving environments
- Distributed computing
- Collaboration technologies
- Visualization
- · Manage petabytes of experimental data and simulation output
- Human/computer interaction
- Reliable fault tolerant components

National terascale distributed scientific computing infrastructure (with NSF)

IT Workforce

- Undergraduate and graduate fellowships
- Retrain applications scientists in computational and computer science

National Aeronautics and Space Administration

Goals

- Reduce risk, cost, and development time
- Increase performance and reliability

Intelligent Synthesis Environment

- Develop an immersive collaborative engineering environment to reduce mission design and development time to less than 30 months
- Develop very rapid, high fidelity life-cycle simulation methods incorporating virtual prototyping

Intelligent Systems that "think," not just compute

- Autonomous, self-reliant, adaptive spacecraft and rovers
- Technology to build high-assurance mission software
- Enhanced human computer interactions
- Systems to extract information and knowledge from massive data streams for scientific understanding and to guide investigations

National Institutes of Health

Biomedical computing for the new millennium: Applying IT to problems in biology and medicine

- Molecular modeling simulations to determine protein structure
- Medical imaging to diagnose human disease

Software research to advance insight into biological mechanisms

Navigate through the visible human — see musculature, organs, and bones

- Medical practitioners can see beyond the physical limits of the human body
- Medical researchers can develop technologies for virtual surgery
- Computer researchers can develop user interfaces and new technologies for image compression, transmission, and storage
- View a patient's colon as a physician would while performing a colonoscopy
 - Physicians and radiologists use CT imaging as a safer, non-invasive procedure
 Can be used for remote diagnosis, eliminating the need for a colonoscopy in a doctor's office
 - Aids fundamental research in automated identification of tumors and lesions
- Use nanomanipulation in virtual collaboratories to feel molecules
 - Researchers can understand how molecular forces work to form biological structures such as viruses
 - K-12 students are exposed to biology through direct sensory access to microscopic objects

High-end computing

• Research biologists can enhance their ability to model even the smallest forms of life

IT work force

Non-biologists such as engineers, mathematicians, and computer scientists, will be trained to work in cross-disciplinary biomedical research teams

National Oceanic and Atmospheric Administration

Software for coupled ocean/atmosphere/ land simulations

- Flexible, component-based models to facilitate collaborative research
- Self-describing data formats to encourage sharing of results
- Use of cache-based commodity processors to improve performance

Acquisition of a large balanced system for research in modeling and prediction

Scalable parallel architecture

NOAA

- Balanced data storage, analysis, and visualization
- Long history of competitive acquisitions and cost-effective management

Weather and climate research

- Additional advances in hurricane prediction
- Physically consistent, deterministic short-term (El Niño) climate prediction
- Address climate model drift and improve ocean model startup
- Improved treatment of cloud-radiative feedback in climate simulations

National Coordination Office for Computing, Information, and Communications (NCO/CIC)

- Coordinates planning, budget, and assessment activities for IT², the HPCC programs, and the NGI initiative
- Supports the President's Information Technology Advisory Committee (PITAC)
- Assists the IT² Working Group to integrate coordination of IT² with HPCC and NGI
- Assists the Subcommittee on Computing, Information, and Communications and its Working Groups:
 - HECC High End Computing and Computation
 - LSN Large Scale Networking (including the NGI)
 - HCS High Confidence Systems
 - HuCS Human Centered Systems
 - ETHR Education, Training, and Human Resources
- Supports R&D outreach to other Federal organizations through the:
 - FISAC Federal Information Services and Applications Council
- This coordination will evolve as IT², HPCC, and the NGI are integrated

National Coordination Office for Computing, Information, and Communications (NCO/CIC)

IT² Coordination

IT², HPCC, and the NGI will be coordinated through the Presidential National Science and Technology Council

- IT² Senior Principals Group
 - NSF Director
 - Under Secretary of Defense (Acquisition and Technology)
 - Under Secretary of Energy
 - NASA Administrator
 - NIH Director
 - NOAA Administrator
 - Senior OMB and NEC officials
- IT² Working Group includes representatives from all participating agencies and departments
 - Chaired by NSF Assistant Director for Computer and Information Science and Engineering
- Multiagency organizations will coordinate Federal R&D in Software
 - Human computer interaction and information management
 - Scalable information infrastructure (including the NGI)
 - High end computing
 - High confidence systems
 - Socio-economic and workforce issues
- The National Coordination Office for Computing, Information, and Communications supports the IT² Working Group and will support multiagency IT² coordination

Web sites

- http://www.ccic.gov/
- http://www.ngi.gov/